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Abstract—A stability criterion for rigid-perfectly plastic structural analysis for structures under-
going large deformation is formulated. which plays a key role in nonlinear limit analysis. Based on
the property of the superpotential in this theory, various variational techniques are suggested for
optimal bounds of the plastic limit load factor. An application is illustrated.

1. INTRODUCTION

The classical limit analysis theory neglects changes in geometry of structures (see Prager
and Hodge, 1951), and shows a beautiful symmetry between the upper and lower bounding
theorems for safety factors by using abstract description (Gao, 1988a.b). Since the influence
of changes in gcometry on the yield load of a structure is of great significance in both
theoretical problems and engincering applications, many efforts in this direction have been
made by Onat and Haythorathwaite (1956), Onat (1960) and Sawczuk (1964) etc. Their
results showed that geometry changes can work for or against the capacity of the strength
of the structurc. However, the basic features of the mathematical problems of determining
the limit load factor in the finite deformation plasticity, remained somewhat obscure.

Recently, the extremum properties of variational functions were studied by Gao and
Strang (1989a) for nonlincar boundary value problems. By introducing a so-called comple-
mentary gap function, a remarkable symmetry between the primal and dual variational
problems was discovered. Application to nonlincar limit analysis yiclds a pair of dual
bounding theorems, when the gap has the right sign (Gao and Strang, 1990). The plastic
yicld condition in this theory is relaxed by the complementary plastic superpotential. In the
present paper, we will find that this gap function plays a key role in nonlinear limit analysis.
Based on the property of the complementary superpotential, various variational principles
are constructed. An application of this is illustrated by an example of rigid-perfectly plastic
beam analysis.

2. COMPLEMENTARY BOUNDING THEOREMS

Let us consider in the reference configuration, a rigid-perfectly plastic body occupying
an open, bounded, conncected region Q < R, with piecewise smooth boundary [ = ¢Q such
that T =T, ul, [,AT, = &. On I, the surface traction is given as 7 = v_r, where v. > 0
is the load multiplier and ¢ is the unit load distribution. Let % and .¥ be the admissible
displacement space and Kirchhofl stress space, respectively. In the case of large dis-
placements but small strains, the boundary value problem for limit analysis is finding the
plastic load multiplier v, and field functions (1.5) e # x .% such that
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gy — S +u+uu,) =0 inQ
[(Ou+ui)Sy),—b:=0 inQ
e, €0W™*(S,) inQ . )
=0 onl,
[0+ ui)Sin—v.t =0 onTl,

in which W* is the complementary plastic superpotential (Gao, 1988a,b).

e 0 ifSex ,
S = + o otherwise, @
where J is a convex subset of the admissible stress space & :

X ={Se&L|f(S)<0 inQ}, (3)

f(8) is the plastic yield function, which is assumed to be convex and lower semi-continuous.
According to the theory of convex analysis (cf. e.g. Ekland and Temam, 1976), W*: &% —
Ru {+ oo} is convex and lower semi-continuous. dW*(S) denotes the subdifferential of
W* at S, which is a convex subset of the strain space & (cf. e.g. Guo 1988u.b: Gao and
Strang, 1989):

ACf(S)/8S,; iff(S)=0,i20 inQ
aW*(S) = {10} if f(S)<0 inQ @)
%] iff($)>0 inQ,
where 4 2 0 is the plastic flow factor.
The plastic superpotential W can be obtained by using the Legendre-Fenchel trans-

formation (sce Gao, 1988a; Gao and Strang, 1989b) :

W(e) = sup {S,e,— W*(S)} = sup S,&,;. &)

Se Sex’

i.e. W(e) is the support function of the convex set )", which is also convex and lower semi-
continuous. So the inverse form of the constitutive relation (1.3) can be written as

S,edW(e,). 6)

Lemma. The structure governed by eqn (1) is stable if
H
G(“‘ S} = J; i S,juk.;uu dQ > 0. (7)

Here G: % x % — R is the so-called complementary gap function of nonlinear variational
boundary value problems (see Gao and Strang, 1989). It plays an important role in
geometrical nonlinear mechanics (see Gao et al.. 1989-1990).

Let %, — % be the kinematically admissible space:

U, = {p@%]p =0 onl, Jn-dl‘ > 0} (3)
r

The kinematically admissible load factor v,: %, — R may be given as
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'[ W(e(r))dQ—J.b,t‘,dQ
0 o

v(t) =
J‘ e, dlr
rl

One has the upper bound theorem for the limit load multiplier (Gao and Strang. 1990).
Theorem \. Among all v € ¥ ,. the stationary points u of v, () and associated S(u) solve the
boundary value problem (1). If for a given v € . the gap function G satisfies

&)

l
G(v, S(w)) = J. 5 8,(W)te, b, dQ 2 0. 10)
a -

then v (v) gives an upper bound of the limit load multiplier v.. i.e.
v, € v(0). (1
If for any given ve U, inequality (10) holds, then v minimizes v,. i.e.

v. = inf v (¢). (12)

re¥,

According to the theory of convex analysis, the subdifferential constitutive relation
Sy e IW{e(u)) yields the following variational inequality :

j‘ Wa(r)) dQ-—J W(e(u))dQ = J‘ S, () [, (r) —e,(0)]dQ VYre. (13)
0 3 0

Substituting geometrical cquations into (3) and using the Gauss: Green law, Theorem |
can be proved (see Gao and Strang, 1989b).
On the dual side, et &/, < 7 x # be the statically admissible space:
So={{T)eS xU|[(0u+u)Ty),—b, =0 inQ
(Ou+1,)Tn,—v 1,=0 onl,}, (14)

in which v~ > 0 is a statically admissible load multiplier associated with (T, ) e ¥,. One
puts

v,(T,r):v‘(T‘v)—J‘ Ww*(T)dQ. (15)
o

Then the lower bound theorem for limit load multiplier can be given by
Theorem 2. Let (S, u) solve the boundary value problem (1). If for a given (T, v)e &,
the guap function G satisfies

G, ) -Ge. N+Glu—-c. ) 20, (16)

then v,(T,v) gives a lower bound for the limit load multiplier v, :
ve 2 ve(T.0). (n
The proof of this theorem can be found in Gao and Strang (1989b). If the statically
admissible ficld satisfies the plastic yield condition. i.e. Te ¥, then W*(T) = 0. Under the

constraint (16), onc has

ve2v (T.)V(T.t)eSLn X, (18)
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3. GENERALIZED VARIATIONAL PRINCIPLES

Introducing the Lagrange multiplier v € %,, the statically admissible constraint in the
lower bound theorem can be relaxed by

f T,e;(v) dﬂ—f W*(T) dQ—J b, dQ
0 o 0

J o, dl
r’#

Theorem 3. For any given (v, T)e#¥,x.&, the stationary points (1, S) of v,(v. T) solve
the boundary value problem (1). If the gap function G satisfies

v, T) = (19)

Ge.T)=20 Y. Ne¥%,x¥. )]
then (1, S) min-maximizes v(v, T), and

v, = v{u, §) = inf sup v,(0,T). 2n
vel, Tey

Proof. According to Gao and Strang (1989), the Lagrangian of boundary value
problem (1) can be given by

L. T) = L T, 6, () dQ - L :V*(T)dn-Lb‘z»idn- ﬁ_ vt dT.

It is casy to prove that
W, S0, Ty =00L(.S:0,T)=0 V(,Te¥ ,x.
The stationary condition for Lagrangian L yields Euler-Lagrange equations:

[(5,k+u,'k)sk,]',—-b,v = 0 in Q,
e, () edW*(S,) inQ,
[(Ou+u,)Sln—v; =0 onl,.

It is proved that the stationary points of v, solve the boundary value problem (1). Moreover,
for any given ve ¥,

sup {J‘ T,8,;(0) dﬂ—j Ww*(T) dﬂ}—fb,v, dQ
r {4} 4] Q

supv, (v, T) =
i J tv,dl
r,

j Wi{e(e)) dQ—J‘ br; dQ
_Ja 0

J v, dl
rl

Recalling Theorem 1, variational eqn (21) is proved. Q.E.D.

= n.(0).
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It should be emphasized that the order of inf-sup in saddle point problem (21) can
not be exchanged, i.e.

inf sup v,(v, T) # sup infv,(v, T).
v T T v

Over the statically admissible space &, v, is degenerated to

G(v, T)+'[ W*(T)dQ
Ve, T) = v (. T)= - @2
J o, drr
rl
For any given (T, v)e &,. if G(v, T) = 0, it is obvious that
v (T,v) 2 vfv,T). (23)

4. CONSTRUCTION OF THE SUPERPOTENTIAL

The simplest constructions of the superpotential W* can be given by (see Gao, 1988 ;
Guao and Hwang, 1985):

1, .
WHT.20) = = f(T)I®() inQ. (24)

where 2 > 0 is a penalty factor and @ is a jump function

+1 iff>0
O(f) = { 0 iff<o. (25)
It is obvious that for any given Te %,
w*T) = sug W2 (T,2) = lim WXT,q). (26)
1> a—0*

Let

J 7.,',-8,',-(0) dn—j W:(T,fl) dQ'—J' b,l.«',- dQ
0 n a

J v, dlr
r.I

The penalty-type saddle point principle can be established by substituting eqn (26) into eqn
(21), if inequality (20) holds

v(0,T;a) =

@n

v. = lim inf sup v,(v, T;a). (28)

2-+0* veWa Tey

Similarly, by substituting eqn (26) into inequality (17), the penalty-type bound theorems
can be obtained as follows:
Theorem 4. If the solution (8,, u,) of the penalty optimal problem
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vo(S, 1) = lim  sup {v‘(T, L')-J' WXT, 1)dﬂ}, 29
0

20" (Tl
satisfies
G, S)—~Gu,, S)+G(u—u, S,) =0,

then vy(S,, u,) gives an optimal lower bound of the plastic limit load multiplier.
The dual-type construction of the complementary plastic superpotential is given by
Gao (1988a) :

WXT.A) = if(TYO(f). (30)

where the Lagrange multiplier 4 2 0 is the dual variable of yield function f(7). One shouid
have

WH(T) =sup WKT,7) ¥TeS. 3

Substituting eqn (31) into eqn (19). a dual-type saddle point variational principle can be
established under constraint (20),

By combining eqn (24) with eqn (30), one has the penalty-duality constructions of the
superpotential :

WhiT.v.lia) = ; {[3.4- (—E f(T)]fD(j;) —i’}, (32)

in which f, = A+ (1/2) f{T) is the so-called penalty-dual dividing domain function (Gao,
1988a).

Theorem 5. There exists a pendalty factor a* > O, such that for uny given 2€ {0, a*], the
optimal plastic limit load multiplier is

vo(S, 1) = sup inl {v“(T,:r)wj- W:,,(T.l;a)dﬂ}. 33
Q

(Neyes, A>0

If the gap function G satisfies the constraint
Gu, S)~ G, S)+Glu—u,,s5) 20, (34)

then vy(S,, 1,) gives an optimal lower bound of the plastic limir load multiplier.
Proof. It is easy to prove (Gao and Hwang, 1985, 1986) that for any given a* > 0,
there exists a€ (0, 2*] such that

WHT)=supWp(T,i:a) YTe?.
iat

Substituting into eqn (15) and recalling Theorem 2, one has v, 2 vo(S,, u,) if constraint
(34) is satisfied.

Based on this theorem, an efficient numerical algorithm for optimal lower bounds of
the limit plastic load multiplier can be suggested (see Gao, 1988a.b; Gao and Hwang,
1985).

5. APPLICATION

Consider a simply supported beam, fully restrained from axial motion and subjected
to a uniformly distributed load. For the sake of simplicity, the axial component of the
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Fig. 1. Beam under a uniform loading.

wL
L}

I,

displacement is neglected. The geometrical parameters involved and the coordinate systems
are defined in Fig. 1. The governing equations in this case have the forms:

M+ (Nw') +v.p =0,

N =0,
£E= 4w’2. (35)
K= —w",

where w is the displacement in the y direction and M and N denote the bending moment
and axial force, respectively. The corresponding generalized strains are (x,¢). For a rect-
angular cross-section of the beam, the yicld function is described by :

f(m.n) = |m|+n°—1, (36)
in which m = M/M,, n = N/N,, M, = a,h*/4, N, = a,h. It was shown by Symonds and
Jones (1972) that when 3 > h/2, the stress profile on the yield condition is reduced to the

point M = 0, N = N,. The gap function (7) in this casc has the form:

L

G(w,n) =j w2 dx.

0

It is easy to see that in this problem, n > 0, G(w,n) = 0, i.e. the structure is stable. For
given statically admissible fields (w, m, n), eqn (15) becomes

L
vilw,m,n) = v~ (w,m,n) —f W*(m,n)dx. 37
0

Choose the following statically admissible fields :

2 2
w=w(,(l—{—i). m=n(l—%3>, n=ud, (38)

where 1, u > 0 are undetermined parameters, 6 = wo/h. Obviously, at initial state (§ = 0),
w(d) = 0. Substituting (38) into (35) and (36) gives

2M,
V@) =n+dust, p=57,

S(n.p.0) = (1 —=x* L)+ p2é7 -1,

Using the penalty—dual type construction of W*, eqn (37) becomes
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Table 1. Numerical results for large deformation plastic beam (#/L = 0.2)

d=wyh 0.25 0.50 0.75 1.00 1.50 2.00
n 0.781 0.340 0.289 0.100 0.030 0.020
u 0.468 0.810 0.84 0.948 0.657 0.490
vy 1.25 1.97 282 3.89 5.94 7.93

Membrane solution  1.00 2.00 3.00 4.00 6.00 8.00

L
V0. . A5 x) = n+4ud’ -~j Whin.pd,ix)dx, 39)
4]

where

., .
;;f-(’ﬁl‘w(s)*l‘if(q.ﬂ,a) 1ff; > 0
;V‘:l(". ‘“' (5‘ }“ z) = P

Al if £, <0.

9 R

For a given § > 0, one has the optimal problem :

vo(d) = max max rp}i{} VO i Aia) Y ae(0,a%). (40)

Choosing the primal values %, = 0.1, 4, = 0, for given precision @ = 0.001, the penalty-
duality algorithm (sce Gao, 1988b) gives the numerical results shown in Table 1.

For comparison, Table I (last row) shows a purely membrane solution obtained from
the set of eqns (38) by assuming M = x = 0 and N = N,. Using the dimensional quantitics
defined carlier, this solution is represented by v, = 49. It can be seen in Table 1 that the
bending moment starts at M = M, and rapidly diminishes, reaching practically zero when
the deflection vquals the beam thickness. At the same time the membrane force steadily
increases towards the fully plastic axial force ,. In this problem, the constraint (34) is

L
j INU=p )W dx 20 V3205,
0

where w is the actual deflection of the beam. According to Theorem 5, v, gives the optimal
lower bound of the plastic limit load multiplier (see Table 1),
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